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A novel rhodamine thiospirolactone chemosensor 1 was found to

develop prominent absorbance and fluorescence enhancements in

the presence of Hg2+ in aqueous solution and this was suggested

to result from the thiospiro ring opening induced by Hg
2+

binding.

The design and synthesis of chemosensors for environmentally

and biologically relevant species in aqueous solutions is cur-

rently of great interest.1 In this regard, chemosensors that can

highly sensitively and selectively monitor heavy metal ions

such as Hg2+, Cu2+ and Pb2+ are especially important.2

Hg2+, widely distributed in the environment due to human

activities, is considered to be toxic in biological activities.

Highly selective and sensitive chemosensors for Hg2+ are

hence demanded. Examples of chromogenic and fluorogenic

chemosensors have been reported,3 many of them, however,

have limitations in terms of heavy synthetic efforts and/or lack

of practical applicability in aqueous solutions.

Rhodamines are dyes extensively employed4 in bio-labeling

and material sciences because of their high absorption coeffi-

cient, high fluorescence quantum yield and long-wavelength

absorption and emission. Among the rhodamines with spiro-

cyclic form (for example, 2 and 3 in Scheme 1), rhodamine

lactone 2, i.e. rhodamine B base, is generally accepted to be in

its colored and fluorescent zwitterion form (rhodamine B) in

protic solvents.5 Rhodamine spirolactam 3 has recently re-

ceived increasing attention in designing chemosensors for

metal ions. This was realized via a metal-induced structural

change from colorless and nonfluorescent spirocyclic form to

colored and fluorescent open form. Several excellent chemo-

sensors of this kind have been reported6 for transition metal

ions such as Hg2+, Cu2+, Pb2+, and Fe3+. As for sensing

Hg2+, an irreversible rhodamine chemosensor was reported by

Tae6e,f employing thiosemicarbazide as a binding site.

Thiohydrazide,6g carbohydrazone,6h phenylthiourea-

ethylenediamine6i and tren6j were also reported to serve as

Hg2+ binding sites. All those aforementioned examples of

rhodamine spirolactam chemosensor showed that, compared

with its counterpart rhodamine spirolactone, rhodamine

spirolactam remained its spirocyclic form in protic solvents

and, therefore, provided the feasibility for constructing che-

mosensors applicable in aqueous solutions. This character of

rhodamine spirolactam can be explained by the fact that the

amine group of rhodamine spirolactam is more nucleophilic

than the hydroxy group of rhodamine spirolactone, which

favors a spirocyclic form strongly. Thus, by regulating the

nucleophilicity of the functional group in the 1-position, the

stability of the spirocyclic structure can be improved. It was

noted that these spirolactams, however, might undergo ring

opening reaction under acidic condition even in the absence of

a metal ion.6c,i

It was hence wondered what will result in if the lactone O

atom in the rhodamine base is replaced by an S atom.

Enlightened by the facts that Hg(II) is a sulfurphilic ion7 and

that the thiol group is more nucleophilic than the hydroxy

group and even than the amine group, we thus synthesised 1,

bearing a monothiospirolactone group in rhodamine architec-

ture. It was observed that 1 showed extremely good selectivity

and high sensitivity toward Hg2+ in aqueous solutions. Com-

pared with its counterpart rhodamine lactone and lactam,

compound 1 revealed three advantages: first, the probe

showed high tolerance to pH, existing in a spirocyclic form

within a pH range of 1–11; secondly, the thiol atom served not

only as an enhancer for cyclization but also as a center for the

direct attack of thiophilic Hg2+, thus attaining a high mole-

cular sensitivity; finally, the probe could be easily synthesized

by a one step or ‘‘one pot’’ reaction.

Compound 1 was facilely synthesized from commercially

available rhodamine B base 2 by a one-step reaction or ‘‘one

pot synthesis’’ with moderate to good yield (Scheme 2).z 1 was
characterized by X-ray crystallography, 1H and 13C NMR and

MS (Fig. S1–3 in ESIw). Single crystals of 1 grown from

CH2Cl2–CH3CN were suitable for X-ray crystallography,

and the determined crystal structure (Fig. 1) confirmed the

unique spirothiolactone structure.y

Scheme 1 Chemical structures of rhodamine B derivatives.
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Aqueous solutions of 1 within pH 1–11 were found to be

colorless and nonfluorescent at visible range of wavelength

4400 nm (Fig. S4–5 in ESIw). Those observations suggest that
1, differing from their lactone and lactam counterparts, is

stable not only in acidic but alkaline conditions as well.

Addition of Hg2+ into a solution of 1 in H2O–CH3CN

(99 : 1, v/v) immediately resulted in a significant enhancement

of absorbance in the visible range of 500–650 nm at room

temperature. This suggests the delocalization of the xanthene

moiety of rhodamine as a result of Hg2+ binding at the

thiospirolactone moiety. Fig. 2(a) shows the absorption spec-

tra of 1 in the presence of Hg2+. With increasing Hg2+

concentration, a new peak at 559 nm was observed together

with a shoulder at 538 nm. These variations are characteristic

of rhodamine dyes. The absorbance of 1 at 559 nm was

proportional to Hg2+ concentration over the range of 10 nM–

4.5 mM (Fig. 2(b)), with a detection limit of 2.1 � 10�9 M.

This dramatic change of color in the presence of Hg2+

suggests that 1 would be a practical ‘naked-eye’ chemosensor

of Hg2+ in aqueous solutions.

The nice nonlinear fitting of the absorbance of 1 against

Hg2+ concentration assumed a 1 : 2 binding ratio, suggesting a

1 : 2 binding stoichiometry (Fig. 2(b)), which was further

supported by Job plots8 (Fig. S6, ESIw). The binding constant

(Ka) of the complex was calculated to be 9.8 � 1013 M�2. Solid

evidence of the binding mode comes from comparing the ESI-

MS spectra of both the free probe 1 and the complex of probe

1 with Hg2+. The peak at m/z 558.7 corresponding to

[Hg(1)2]
2+ (Fig. S7, ESIw) was clearly observed when 1.0 eq.

of Hg2+ was added to 1, whereas free probe 1 exhibited only a

peak at m/z 459.2 corresponding to [1 + H]+. The chromo-

genic behavior of 1 toward Hg2+ and related heavy transition

metal ions was investigated. As shown in Fig. 3 and Fig. S8,

ESI,w the absorption response of 1 displays an excellent

selectivity to Hg2+ over all the other tested ions. Competitive

experiments also showed high tolerance of the assay system

toward foreign transition ions (Fig. S9, ESIw).
Furthermore, the presence of Hg2+ also induced significant

enhancement of the fluorescence intensity of 1 at 585 nm with

excitation at 530 nm (Fig. 4(a)). The response of 1 toward all

the tested metal ions was also examined and the assays

revealed that the enhancement in the fluorescence emission

took place only in the case of Hg2+ (Fig. 4(b)), indicating high

selective sensing towards Hg2+.

It is important to indicate that the spectral sensing is

reversible.6g,9 The fluorescence and color of the 1–Hg2+

complex disappeared immediately upon addition of KI

(4 eq. to Hg2+) and was restored after the treatment with

excess amounts of Hg2+. This regeneration capability makes

the current thiospirolactone based chemosensor, 1, much more

practical.3e Based on the description above, the binding mode

between probe 1 and Hg2+ is proposed in Scheme 3.

In conclusion, a new thiospirolactone based rhodamine-B

base chemosensor for Hg2+ has been developed, which ex-

hibited prominent absorption and fluorescence enhancements

to Hg2+ with a particular selectivity and excellent sensitivity

and could be used for naked-eye detection in aqueous

Scheme 2 Synthesis of 1. (a) 1 eq. Lawesson’s regent, benzene, reflux,
N2, 4 h; (b) ClCH2CH2Cl, POCl3, reflux, 4 h; (c) excess Na2S saturated
aqueous solution.

Fig. 1 Crystal structure of 1 shown at 50% probability. All hydrogen

atoms are omitted for clarity.

Fig. 2 (a) Changes in the absorption spectra of 1 in 99 : 1

H2O–CH3CN solutions at pH 4.0 (in a 10 mM NaOAc–HOAc buffer)

upon addition of different amounts of Hg2+. (b) Absorbance of 1

(10 mM) at 559 nm vs. Hg2+ concentration under the same condition.

Inset: enlarged region of (1–10) � 10�8 M of Hg2+.

Fig. 3 Color changes observed for 1 (10 mM) in 99 : 1 H2O–CH3CN

solutions at pH 4.0 (in a 10 mM NaOAc–HOAc buffer) upon addition

of 5 mM metal ions. From left to right: blank, Ba2+, Cr3+, Cu2+,

Co2+, Cd2+, Hg2+, Ag+, Fe3+, Zn2+, Pb2+, Ni2+, Mn2+.
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solutions. This chemosensor was easily prepared and found to

be stable in both alkaline and acidic solutions. The spectral

response toward Hg2+ was established to be reversible. All the

aforementioned characteristics of 1 implies that 1 has a

potential to be applied to an optical fiber chemical sensor.

The thiolactone framework was also concluded to be a pro-

mising structural element for Hg2+-selective chemosensor.

Our following work will focus on using thiolactone as a

recognition unit for designing other chemosensors.

This work was supported by the National Natural Science

Foundation of China under grant No. 20275033 and No.

20675067.

Notes and references

z Rhodamine B base (1.00 g, 2.26 mmol) and Lawesson’s reagent (0.92
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Fig. 4 (a) Fluorescence spectra of 1 (10 mM) in 99 : 1 (v/v)

H2O–MeCN solutions at pH 4.0 (in a 10 mM NaOAc–OHAc buffer)

in the presence of different amounts of Hg2+. (b) Fluorescence spectra

of 1 in the presence of 1 eq. different metal ions under the same

condition. Other ions: Ca2+, Mg2+, Ba2+, Cr3+, Cu2+, Co2+, Cd2+,

Ag+, Fe3+, Zn2+, Pb2+, Ni2+, Mn2+. lex = 530 nm. Slit: 5 nm/5 nm.

Scheme 3 The proposed binding mode between 1 and Hg2+.
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